Table 2a: A Marxian Class Analytic Accounting Matrix (Closed Economy)

		PRODUCTION	CURRENT		ACCUMULATION	
		Enterprise	ENTERPRISE	Household	Enterprise	Σ
PRODUCTION	Enterprise	C	Ke	\mathbf{K}^{h}	I°	\mathbf{q}_1
CURRENT	Enterprise	S	-	0	0	\mathbf{q}_2
	HOUSEHOLD	V	S^p	-	I ^v	\mathbf{q}_3
ACCUMULATION	ENTERPRISE	0	0	Hσ	-	\mathbf{q}_4
Σ		qı'	q ₂ '	q ₃ '	q ₄ '	

These matrices are defined as:

 $C = [c_{ij}]$ an n×n matrix of inter-industry flows.

 $S = [s_{ij}]$ an n×n diagonal matrix recording the appropriation of surplus by the enterprises.

 $V = [v_{ij}]$ a k×n matrix listing wage payments by the enterprise to the households.

 $\mathbf{K}^{\mathbf{e}} = [k_{ij}^{e}]$ an n×n matrix listing the purchase of commodities by enterprises as part of the faux frais.

 $S^p = [s_{ij}^p]$ a k×n matrix recording the distribution of surplus from the enterprises to the households.

 $\mathbf{K}^{h} = [k_{ij}^{h}]$ an n×k matrix listing the purchase of commodities by households for consumption.

 $\mathbf{H}^{\sigma} = [h_{ij}^{\sigma}]$ an n×k matrix listing the savings by households.

 $I^c = [i_{ij}^c]$ an n×n matrix listing the purchase of commodities for accumulation.

 $I^{v} = [i_{ij}^{v}]$ a k×n matrix listing the purchase of labor power from households to expand employment.